Socio-Economic Impact of Nano-Technology
Vasant K. Wagh1 & Neeraj R. Prasad2
1Ex-Principal, Fergusson College, Pune 411004, India, Email: principal_vkw@hotmail.com
2School of Nano-Science and Technology, Shivaji University, Kolhapur, Maharashtra, Email: neeraj_prasad21@rediffmail.com
ABSTRACT:
Nano-Science and Nanotechnology have made inroads in all traditional scientific
disciplines such as physics, chemistry, life sciences, engineering, medical science, pharmaceutical science, etc. Nanotechnology is making an ever-increasing contribution in the areas of energy production and storage, defense, memory storage devices, the health sector, the power sector, agriculture, water purification, the water supply system, etc. In recent years, Nano devices and Nano materials have undergone tremendous developments. In this review paper, the authors attempt to give a brief account of the socio-economic impact of the fast growing field of nano-science and nanotechnology. The authors further feel that it is difficult to imagine the scope and extent of the socio-econmic impact of nanotechnology in the near future.
Keywords: Nanotechnology, Nano-medicine, Nano-textile, Nano-catalyst, Organic Transformations
DOI:
FULL TEXT:
REFERENCES:
Arvizo, R. R., Bhattacharyya, S., Kudgus, R. A., Giri, K., Bhattacharya, R., & Mukherjee, P. (2012). Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future. Chemical Society Reviews, 41(7), 2943-2970. doi: 10.1039/c2cs15355f
Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., & Cummins, E. (2012). Nanotechnologies in the food industry – Recent developments, risks and regulation. Trends in Food Science & Technology, 24 (1), 30-46. doi: 10.1016/j.tifs.2011.10.006
Di Maria, F., Lodola, F., Zucchetti, E., Benfenati, F., & Lanzani, G. (2018). The evolution of artificial light actuators in living systems: From planar to nanostructured interfaces. Chemical Society Reviews, 47(13), 4757- 4780. doi: 10.1039/C7CS00860K
Edwards, P., & Thomas, J. (2007). Gold in a metallic divided state—From faraday to present-day nanoscience. Angewandte Chemie International Edition, 46(29), 5480-5486. doi: 10.1002/anie.200700428
Freestone, I., Meeks, N., Sax, M., & Higgitt, C. (2007). The Lycurgus Cup — A Roman nanotechnology. Gold Bulletin, 40, 270-277. doi: 10.1007/BF03215599
Gatoo, M. A., Naseem, S., Arfat, M. Y., Dar, A. M., Qasim, K., & Zubair, S. (2014). Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. Biomed Res Int., 2014, 498420. doi:10.1155/2014/498420
Gupta, R., & Xie, H. (2018). Nanoparticles in Daily Life: Applications, Toxicity and Regulations. J Environ Pathol Toxicol Oncol., 37(3), 209-230. doi:10.1615/JEnvironPatholToxicolOncol.2018026009.
Khare, S., Williams, K., & Gokulan, K. (2014). Nanotechnology. Encyclopedia of Food Microbiology (Second Edition), 893-900. doi: 10.1016/B978-0-12-384730-0.00406-7
Kumar, A., Nair, A., Reddy, A., & Garg, A. (2006). Availability of essential elements in bhasmas: Analysis of Ayurvedic metallic preparations by INAA. Journal of Radioanalytical and Nuclear Chemistry, 270, 173-180. doi: 10.1007/s10967-006-0326-z
Mulvaney, P. (1996). Materials Mix. Optical properties of metal clusters By U. Kreibig, M. Vollmer, Springer Series in Materials Science, Vol. 25, Springer, Berlin 1995, XVII, 532 pp., Hardcover, DM 98.00, ISBN 3-540-57836-6. Advanced Materials, 8(8), 699. doi: 10.1002/adma.19960080823
Nath, D., & Banerjee, P. (2013). Green nanotechnology - A new hope for medical biology. Environmental Toxicology and Pharmacology, 36(3), 997-1014. doi: 10.1016/j.etap.2013.09.002
Nazeruddin, G. M., Prasad, S. R., Shaikh, Y. I., & Prasad, N. R. (2015). A brief review: Science at nanoscale. International Journal of Nanomaterials and Nanostructures, 1(1), 16-32.
Nazeruddin, G. M., Prasad, R. N., Shaikh, Y. I., & A. A. Shaikh, A. A. (2014). Synergetic effect of Ag-Cu bimetallic nanoparticles on antimicrobial activity. Der Pharmacia Lettre, 6(3), 129-136. Retrieved from http://scholarsresearchlibrary.com/archive.html
Papoff, F., & Hourahine, B. (2011). Geometrical Mie theory for resonances in nanoparticles of any shape. Opt. Express, 19(22), 21432-21444. doi: 10.1364/OE.19.021432
Persano, L., Camposeo, A., & Pisignano, D. (2015). Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Progress in Polymer Science, 43, 48-95. doi: 10.1016/j.progpolymsci.2014.10.001
Prasad, R. D., Charmode, N., Shrivastav, O. P., Prasad, S. R., Moghe, A., Samant, A., Sarvalkar, P. D., & N. R. Prasad, N. R. (2021). A Review on Concept of nanotechnology in veterinary medicine. ES Food & Agroforestry, 4, 28-60. doi: 10.30919/esfaf481
Prasad, S. R., Teli, S. B., Ghosh, J., Prasad, N. R., Shaikh, V. S., Nazeruddin, G. M., Al-Sehemi, A. G., Patel, I., & Shaikh, Y. I. (2021). A review on bio-inspired synthesis of silver nanoparticles: Their antimicrobial efficacy and toxicity. Engineered Science, 16, 90-128. doi: 10.30919/es8d479
Rothe, H., Fautz, R., Gerber, E., Neumann, L., Rettinger, K., Schuh, W., & Gronewold, C. (2011). Special aspects of cosmetic spray safety evaluations: Principles on inhalation risk assessment. Toxicology Letters, 205(2), 997-1014. doi: 10.1016/j.toxlet.2011.05.1038
Sai-Halasz, G. A., Wordeman, M. R., Kern, D. P., Rishton, S. A., Ganin, E., Chang, T. H. P., & Dennard, R. H. (1990). Experimental technology and performance of 0.1-µm-gate-length FETs operated at liquid-nitrogen temperature. IBM Journal of Research & Development, 34(4), 452-465. doi: 10.1147/rd.344.0452
Shi, J., Votruba, A. R., Farokhzad, O. C., & Langer, R. (2010). Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Letters, 10(9), 3223-3230. doi: 10.1021/nl102184c
Zhao, Y., Xie, Z., Gu, H., Zhu, C., & Gu, Z. (2012). Bio-Inspired Variable Structural Color Materials. Chemical Society Reviews, 41(8), 3297-3317. doi: 10.1039/c2cs15267c